On Bc Type Basic Hypergeometric Orthogonal Polynomials

نویسنده

  • J. V. STOKMAN
چکیده

Abstract. The five parameter family of multivariable Askey-Wilson polynomials is studied with four parameters generically complex. The multivariable Askey-Wilson polynomials form an orthogonal system with respect to an explicit (in general complex) measure. A partially discrete orthogonality measure is obtained by shifting the contour to the torus while picking up residues. A parameter domain is given for which the partially discrete orthogonality measure is positive. The orthogonality relations and norm evaluations for multivariable q-Racah polynomials and multivariable big and little q-Jacobi polynomials are proved by taking suitable limits in the orthogonality relations for the multivariable Askey-Wilson polynomials. In particular new proofs of several well known q-analogues of the Selberg integral are obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raising and lowering operators and their factorization for generalized orthogonal polynomials of hypergeometric type on homogeneous and non-homogeneous lattice

We complete the construction of raising and lowering operators, given in a previous work, for the orthogonal polynomials of hypergeometric type on nonhomogeneous lattice, and extend these operators to the generalized orthogonal polynomials, namely, those difference of orthogonal polynomials that satisfy a similar difference equation of hypergeometric type. PACS Numbers: 0210N, 0220S, 0230V, 027...

متن کامل

Basic Hypergeometric Functions and Orthogonal Laurent Polynomials

A three-complex-parameter class of orthogonal Laurent polynomials on the unit circle associated with basic hypergeometric or q-hypergeometric functions is considered. To be precise, we consider the orthogonality properties of the sequence of polynomials { 2Φ1(q−n, qb+1; q−c+b−n; q, qz)}n=0, where 0 < q < 1 and the complex parameters b, c and d are such that b = −1,−2, . . ., c− b+ 1 = −1,−2, . ...

متن کامل

Orthogonal basic hypergeometric Laurent polynomials

The Askey-Wilson polynomials are orthogonal polynomials in x = cos θ, which are given as a terminating 4φ3 basic hypergeometric series. The non-symmetric AskeyWilson polynomials are Laurent polynomials in z = eiθ, which are given as a sum of two terminating 4φ3’s. They satisfy a biorthogonality relation. In this paper new orthogonality relations for single 4φ3’s which are Laurent polynomials in...

متن کامل

Modified Clebsch-gordan-type Expansions for Products of Discrete Hypergeometric Polynomials. 1

Starting from the second-order diierence hypergeometric equation satissed by the set of discrete orthogonal polynomials fp n g, we nd the analytical expressions of the expansion coeecients of any polynomial r m (x) and of the product r m (x)q j (x) in series of the set fp n g. These coeecients are given in terms of the polynomial coeecients of the second-order diierence equations satissed by th...

متن کامل

The Complementary Polynomials and the Rodrigues Operator of Classical Orthogonal Polynomials

From the Rodrigues representation of polynomial eigenfunctions of a second order linear hypergeometric-type differential (difference or q-difference) operator, complementary polynomials for classical orthogonal polynomials are constructed using a straightforward method. Thus a generating function in a closed form is obtained. For the complementary polynomials we present a second order linear hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007